我们研究了从高阶图卷积中的有效学习,并直接从邻接矩阵进行节点分类学习。我们重新访问缩放的图形残留网络,并从残留层中删除Relu激活,并在每个残留层上应用一个重量矩阵。我们表明,所得模型导致新的图卷积模型作为归一化邻接矩阵,残留权重矩阵和残差缩放参数的多项式。此外,我们提出了直接绘制多项式卷积模型和直接从邻接矩阵学习的自适应学习。此外,我们提出了完全自适应模型,以学习每个残留层的缩放参数。我们表明,所提出的方法的概括界限是特征值谱,缩放参数和残留权重的上限的多项式。通过理论分析,我们认为所提出的模型可以通过限制卷积的更高端口和直接从邻接矩阵学习来获得改进的概括界限。我们使用一套真实数据,我们证明所提出的方法获得了提高的非全粒图淋巴结分类的精度。
translated by 谷歌翻译
虽然减少方差方法在解决大规模优化问题方面取得了巨大成功,但其中许多人遭受了累积错误,因此应定期需要进行完整的梯度计算。在本文中,我们提出了一种用于有限的和非convex优化的单环算法(梯度估计器的单环方法),该算法不需要定期刷新梯度估计器,但实现了几乎最佳的梯度复杂性。与现有方法不同,雪橇具有多功能性的优势。 (i)二阶最优性,(ii)PL区域中的指数收敛性,以及(iii)在较小的数据异质性下较小的复杂性。我们通过利用这些有利的特性来构建有效的联合学习算法。我们展示了输出的一阶和二阶最优性,并在PL条件下提供分析。当本地预算足够大,并且客户少(Hessian-)〜异质时,该算法需要较少的通信回合,而不是现有方法,例如FedAvg,脚手架和Mime。我们方法的优势在数值实验中得到了验证。
translated by 谷歌翻译
我们提出了一种模块化方法,将深神经网络(DNN)分解成小模块,从功能透视中重新编译到一些其他任务的新模型中。预计分解模块由于其体积小而具有可解释性和可验证性的优点。与基于重用模型的现有研究相比,涉及再培训的重复模型,例如传输学习模型,所提出的方法不需要再培训并且具有广泛的适用性,因为它可以容易地与现有的功能模块组合。所提出的方法利用重量掩模提取模块,可以应用于任意DNN。与现有研究不同,它不需要对网络架构的假设。要提取模块,我们设计了一种学习方法和损耗功能,可以最大化模块之间的共享权重。结果,可以重新编码提取的模块而不会大大增加。我们证明所提出的方法可以通过在模块之间共享重量来分解和重​​新测试具有高压缩比和高精度的DNN,并且优于现有方法。
translated by 谷歌翻译
我们研究了深GCN模型中的自适应层图形卷积。我们建议ADAGPR在GCNII网络的每一层中学习通用的Pageranks,以诱导适应性卷积。我们表明,ADAGPR结合的概括是由归一化邻接矩阵的特征值谱的多项式按概括性Pagerank系数数量的顺序界定的。通过分析概括范围,我们表明过度厚度取决于汇总的较高阶段矩阵矩阵和模型深度。我们使用基准真实数据对节点分类进行了评估,并表明ADAGPR与现有的图形卷积网络相比提供了改进的精确度,同时证明了针对超平面的稳健性。此外,我们证明了对层概括的PageRanks系数的分析使我们能够在每个层上定性地了解模型解释的卷积。
translated by 谷歌翻译
Graph Neural Networks (graph NNs) are a promising deep learning approach for analyzing graph-structured data. However, it is known that they do not improve (or sometimes worsen) their predictive performance as we pile up many layers and add non-lineality. To tackle this problem, we investigate the expressive power of graph NNs via their asymptotic behaviors as the layer size tends to infinity. Our strategy is to generalize the forward propagation of a Graph Convolutional Network (GCN), which is a popular graph NN variant, as a specific dynamical system. In the case of a GCN, we show that when its weights satisfy the conditions determined by the spectra of the (augmented) normalized Laplacian, its output exponentially approaches the set of signals that carry information of the connected components and node degrees only for distinguishing nodes. Our theory enables us to relate the expressive power of GCNs with the topological information of the underlying graphs inherent in the graph spectra. To demonstrate this, we characterize the asymptotic behavior of GCNs on the Erdős -Rényi graph. We show that when the Erdős -Rényi graph is sufficiently dense and large, a broad range of GCNs on it suffers from the "information loss" in the limit of infinite layers with high probability. Based on the theory, we provide a principled guideline for weight normalization of graph NNs. We experimentally confirm that the proposed weight scaling enhances the predictive performance of GCNs in real data 1 .
translated by 谷歌翻译
我们认为随机梯度下降及其在繁殖内核希尔伯特空间中二进制分类问题的平均变体。在使用损失函数的一致性属性的传统分析中,众所周知,即使在条件标签概率上假设低噪声状态时,预期的分类误差也比预期风险更慢。因此,最终的速率为sublinear。因此,重要的是要考虑是否可以实现预期分类误差的更快收敛。在最近的研究中,随机梯度下降的指数收敛速率在强烈的低噪声条件下显示,但前提是理论分析仅限于平方损耗函数,这对于二元分类任务来说是不足的。在本文中,我们在随机梯度下降的最后阶段中显示了预期分类误差的指数收敛性,用于在相似的假设下进行一类宽类可区分的凸损失函数。至于平均的随机梯度下降,我们表明相同的收敛速率来自训练的早期阶段。在实验中,我们验证了对$ L_2 $调查的逻辑回归的分析。
translated by 谷歌翻译
Generative models, particularly GANs, have been utilized for image editing. Although GAN-based methods perform well on generating reasonable contents aligned with the user's intentions, they struggle to strictly preserve the contents outside the editing region. To address this issue, we use diffusion models instead of GANs and propose a novel image-editing method, based on pixel-wise guidance. Specifically, we first train pixel-classifiers with few annotated data and then estimate the semantic segmentation map of a target image. Users then manipulate the map to instruct how the image is to be edited. The diffusion model generates an edited image via guidance by pixel-wise classifiers, such that the resultant image aligns with the manipulated map. As the guidance is conducted pixel-wise, the proposed method can create reasonable contents in the editing region while preserving the contents outside this region. The experimental results validate the advantages of the proposed method both quantitatively and qualitatively.
translated by 谷歌翻译
Artificial life is a research field studying what processes and properties define life, based on a multidisciplinary approach spanning the physical, natural and computational sciences. Artificial life aims to foster a comprehensive study of life beyond "life as we know it" and towards "life as it could be", with theoretical, synthetic and empirical models of the fundamental properties of living systems. While still a relatively young field, artificial life has flourished as an environment for researchers with different backgrounds, welcoming ideas and contributions from a wide range of subjects. Hybrid Life is an attempt to bring attention to some of the most recent developments within the artificial life community, rooted in more traditional artificial life studies but looking at new challenges emerging from interactions with other fields. In particular, Hybrid Life focuses on three complementary themes: 1) theories of systems and agents, 2) hybrid augmentation, with augmented architectures combining living and artificial systems, and 3) hybrid interactions among artificial and biological systems. After discussing some of the major sources of inspiration for these themes, we will focus on an overview of the works that appeared in Hybrid Life special sessions, hosted by the annual Artificial Life Conference between 2018 and 2022.
translated by 谷歌翻译
Vehicle routing problems and other combinatorial optimization problems have been approximately solved by reinforcement learning agents with policies based on encoder-decoder models with attention mechanisms. These techniques are of substantial interest but still cannot solve the complex routing problems that arise in a realistic setting which can have many trucks and complex requirements. With the aim of making reinforcement learning a viable technique for supply chain optimization, we develop new extensions to encoder-decoder models for vehicle routing that allow for complex supply chains using classical computing today and quantum computing in the future. We make two major generalizations. First, our model allows for routing problems with multiple trucks. Second, we move away from the simple requirement of having a truck deliver items from nodes to one special depot node, and instead allow for a complex tensor demand structure. We show how our model, even if trained only for a small number of trucks, can be embedded into a large supply chain to yield viable solutions.
translated by 谷歌翻译
Problem instances of a size suitable for practical applications are not likely to be addressed during the noisy intermediate-scale quantum (NISQ) period with (almost) pure quantum algorithms. Hybrid classical-quantum algorithms have potential, however, to achieve good performance on much larger problem instances. We investigate one such hybrid algorithm on a problem of substantial importance: vehicle routing for supply chain logistics with multiple trucks and complex demand structure. We use reinforcement learning with neural networks with embedded quantum circuits. In such neural networks, projecting high-dimensional feature vectors down to smaller vectors is necessary to accommodate restrictions on the number of qubits of NISQ hardware. However, we use a multi-head attention mechanism where, even in classical machine learning, such projections are natural and desirable. We consider data from the truck routing logistics of a company in the automotive sector, and apply our methodology by decomposing into small teams of trucks, and we find results comparable to human truck assignment.
translated by 谷歌翻译